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Abstract

A theoretical model is developed for red blood cell motion in a diverging microvessel bifurcation,
where the downstream branches are equal in size but receive di�erent ¯ows. The model is used to study
migration of red cells across streamlines of the underlying ¯ow, due to particle shape and ¯ow
asymmetry. E�ects of cell±cell interactions are neglected. Shapes of ¯owing red cells are approximated
by rigid spherical caps. In uniform shear ¯ows, such particles rotate periodically and oscillate about
¯uid streamlines with no net migration. However, net migration can occur in non-uniform ¯ows due to
the particles' lack of fore-aft symmetry. A nonuniform ¯ow ®eld representative of a bifurcation is
developed: ¯ow bounded by two parallel plates, and divided by a cylindrical post. Signi®cant migration
is found to occur only with a nonuniform and asymmetric distribution of upstream orientations. The
model suggests that the assumption made in previous models of bifurcations, that red cells follow ¯uid
streamlines, is justi®ed if cells approach the bifurcations with random orientations. 7 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

When blood ¯ows through a diverging bifurcation in a microvessel, the hematocrits (volume
fractions of red blood cells) in the two downstream branches are generally unequal. This
``phase separation'' leads to an uneven distribution of hematocrit in the vessels of the
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microcirculation, which signi®cantly in¯uences its oxygen-carrying characteristics. Experimental
observations (Pries et al., 1989) show that, if the two downstream branches are similar in size,
the branch with the higher ¯ow rate generally receives a higher hematocrit than the other
branch. Details of the bifurcation geometry, such as the angles between the upstream and
downstream vessels, have little e�ect on this behavior. However, the distribution of hematocrit
is dependent on the diameters of the vessels and the hematocrit in the parent vessel.
Unequal hematocrit distribution can result from two main factors: non-uniform red cell

distribution in the upstream vessel, and deviation of red cell trajectories from ¯uid streamlines
in the vicinity of the bifurcation. Most previous theoretical analyses of this phenomenon
(Schmid-SchoÈ nbein et al., 1980; PerkkioÈ and Keskinen, 1983; Fenton et al., 1985; Rong and
Carr, 1990; Enden and Popel, 1992) have focused on the e�ects of non-uniform upstream red
cell distribution, assuming that red cells follow ¯uid streamlines. The concentration in each
downstream vessel is then determined by the concentration in the region of the upstream vessel
that feeds it (its upstream ``¯uid capture tube''). Hematocrit is generally low in a region near
the wall of the upstream vessel (the ``plasma layer''). The ¯uid capture tube of the branch with
lower ¯ow includes proportionally more of this region, and so, that branch receives a lower
hematocrit than the other branch. This e�ect is known as ``plasma skimming''.
The assumption that red cells follow the streamlines of the ¯ow in the absence of cells is

reasonable for vessels with diameters much larger than a single cell. However, phase separation
is stronger in smaller bifurcations, where this assumption is less justi®able. If the cell is not
small relative to the characteristic dimensions of the ¯ow ®eld in the bifurcation, its center of
mass may deviate signi®cantly from the ¯uid streamlines of the basic ¯ow. This is known as
``red cell screening'' (Pries et al., 1981) because it results from the ®nite size of red cells relative
to the diameters of the vessels that they are entering. Such migration across streamlines, which
may contribute to the unequal hematocrit distribution in bifurcations, is considered in this
study. The Reynolds number is much less than one and Stokes ¯ow is assumed. E�ects of
interactions between particles are neglected. The hematocrit (volume fraction of red blood
cells) in bulk human blood is typically in the range 40±45%, but a wide range of hematocrits,
including very low values, is observed in microvessels, as a result of phase separation. Results
for low hematocrits are therefore physiologically relevant. Experimental data of Ditch®eld and
Olbricht (1996) for rigid spheres, and Pries et al. (1989) for red cells in vivo suggest that phase
separation is actually strongest at very low hematocrits. At higher hematocrits, multi-particle
interactions may in¯uence phase separation, but such e�ects are not considered here.
The motion of a suspended (neutrally buoyant) particle in a ¯uid depends both on its shape

and on the ¯ow ®eld. The e�ect of the ¯ow ®eld may be seen by considering a local Taylor
expansion of the velocity ®eld about the particle center. In a linear ¯ow, the center of a sphere
must follow a ¯uid streamline. However, non-spherical particles may deviate from streamlines.
The term ``shape-dependent migration'' is used here for deviation from streamlines, under
conditions where spherical particles would not deviate.
If the second derivatives of the ¯ow ®eld are nonzero (or equivalently, the pressure gradient

is nonzero), a spherical particle can deviate from streamlines. According to Faxen's Law
(Happel and Brenner, 1973), the particle's velocity relative to the base ¯ow at its center is
a2rp=�6Z�, where p is the hydrodynamic pressure, a is the radius, and Z is the ¯uid viscosity.
While this result is exact only for an unbounded ¯uid, it is a good approximation for bounded
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¯ows provided that the particle is not too close to the boundaries. Since this e�ect results in
migration in the direction of increasing pressure, it is referred to as ``pressure-gradient
migration.''
Yan et al. (1991) and Wu et al. (1992) studied the trajectories of spherical particles near a

circular hole in a plane boundary with a shear ¯ow over it, as a model for ¯ow in a bifurcation
with a side branch which is much smaller than the parent vessel. The reduction of particle
concentration due to the plasma skimming e�ect in such a bifurcation was analyzed by Yan et
al. (1991). Interactions between ®nite-sized particles and the walls were considered by Wu et al.
(1992) who showed that the concentration in the side branch could be further reduced by
``screening'' e�ects. The suction applied to the side branch results in particle migration away
from the branch, in accordance with Faxen's Law.
The aim of the present study is to analyze the trajectories of particles approaching the

dividing surface in a bifurcation whose downstream branches have approximately equal
diameters. In the microcirculation, such bifurcations occur more frequently than bifurcations
with one side branch that is much smaller than the parent vessel. The dividing surface (the part
of the wall lying between the downstream vessels) is generally curved, not sharp-edged as
assumed by Yan et al. (1991) and Wu et al. (1992). Particle migration across streamlines
contributes to unequal hematocrit distribution when it causes particles to cross the separating
streamsurface, i.e., the surface separating the upstream ``capture tubes'' of the two downstream
vessels. Therefore, the emphasis here is on the motion of particles approaching the ¯ow
divider, whose trajectories lie near the separating streamsurface. Such particles typically
originate in the central part of the ¯ow of the parent vessel, and their interactions with the
dividing surface are likely to be more important than their interactions with other parts of the
vessel walls in determining which branch they enter.
Based on these considerations, the following con®guration is assumed. The dividing surface

is represented by a cylindrical post of ®nite height, whose curvature corresponds to the
curvature of the dividing surface. The domain is bounded above and below by parallel plates.
This allows imposition of an overall pressure gradient to drive the ¯ow, which is not possible if
the domain is in®nite in three dimensions. The distance between the plates corresponds to the
diameter of the downstream vessels. This geometry has the advantage that the basic ¯ow in it
can be calculated analytically, but it retains important features of the actual bifurcation.
Unequal ¯ows in the downstream vessels are represented by asymmetry of the ¯ow impinging
on the post.
Red cells are not generally spherical and often have asymmetric shapes; this may in¯uence

their trajectories. Both spherical and non-spherical particles are considered here. Particle
motions are computed from local linear and quadratic approximations to the basic ¯ow in the
vicinity of the particle. This approach is appropriate for vessels with diameters several times
that of a red cell, in which cells are not in close proximity to vessel walls. It neglects the e�ect
of ¯ow ®eld boundaries on the perturbation of the ¯ow ®eld by the particle, and its validity is
therefore limited when particles are very close to the ¯ow divider.
Although red cells are highly deformable, their membranes possess signi®cant viscous

resistance to shear deformation. Typically, red cells traverse bifurcations in a short time (of the
order of milliseconds) and their shape change during this period is likely to be slight.
Therefore, in this analysis, ®xed particle shapes are assumed. For studying shape-dependent
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migration, orthotropic particles (particles with three orthogonal planes of symmetry) cannot be
used. This includes spheres, disks, ellipsoids, and biconcave disks, all of which follow ¯uid
streamlines in a shear ¯ow (Bretherton, 1962). Several experimental studies have used such
shapes (Ditch®eld and Olbricht, 1996; Chien et al., 1985; Bugliarello and Hsiao, 1964), and
therefore could not include shape-dependent migration. A simple shape that will migrate o�
¯uid streamlines in a shear ¯ow is the (hollow) spherical cap. The spherical cap shape is
suggestive of experimentally observed red cell shapes, not only in narrow tubes, but also in
larger tubes where red cells exhibit multi®le ¯ow (Skalak and Branemark, 1969; Goldsmith and
Karino, 1980). Red cells were modeled as rigid spherical caps in the experimental study of
Hochmuth and Sutera, 1970. The theoretical model of Barnard et al. (1968) for red cell motion
in tubes led to parachute-shaped cells resembling spherical caps. From these considerations, the
spherical cap was chosen to study shape-dependent migration here.

2. Formulation of the model

The model used to study particle migration is now formulated. First, the asymmetric divided
¯ow that is used to study both shape-dependent migration and pressure-gradient migration is
developed. This is done in two steps: in Section 2.1.1, a suitable asymmetric ¯ow in the absence
of the dividing surface (cylindrical post) is determined. Asymmetrically divided ¯ow in a
bifurcation with symmetric geometry can be represented as the superposition of a ¯ow divided
symmetrically between the two downstream branches, and a ¯ow from the low-¯ow branch
into the high-¯ow branch, with no net ¯ow in the parent vessel (Fig. 1a). Plane Poiseuille ¯ow
is an obvious choice for the symmetric component. An asymmetric ¯ow with the desired
behavior upstream of the bifurcation that has a simple analytical expression is chosen. Then in
Section 2.1.2, the disturbance ¯ow due to the post is computed, with the particles still absent.
Behavior of the ¯ow downstream of the bifurcation has no e�ect on distribution of particles
and is therefore ignored here. In Section 2.2, the equations for shape-dependent migration of
the model particles (spherical caps) in the ¯ow are presented. For pressure-gradient migration,
the Faxen's Law approximation is used; this simple equation does not require a separate
section for its presentation.

2.1. Fluid ¯ow in a model bifurcation

A Cartesian coordinate system (x, y, z ), and a cylindrical coordinate system �r, y, z� are
used, as shown in Fig. 1a. They are related by x � r cos y, y � r sin y, with the z-axis the same
for both. The parallel plates are located at z � ÿh and z � h: The cylindrical post is described
by r � R, forÿhRzRh: The main direction of ¯ow is the x-direction. It is convenient to
decompose it into two components: the ¯ow (u, p ) between parallel plates in the absence of the
post; and the disturbance ¯ow (v, q ) caused by the presence of the post.

2.1.1. Flow in the absence of the cylindrical post
The two components, symmetric and asymmetric, are represented in the model system by

¯ows us and ua, respectively. The symmetric part is chosen as uniform plane Poiseuille ¯ow, the
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two-dimensional analog to Poiseuille ¯ow in a cylindrical tube:

us � exA

�
1ÿ z2

h2

�
, �1�

where A is a constant. Near the dividing surface, the asymmetric ¯ow is approximately in the
sideways (ÿy ) direction. (In what follows, the high ¯ow side will be to the right when facing
the dividing surface from upstream.) For simplicity, a unidirectional ¯ow ua � eyuy�x, z� is
therefore chosen. Then the pressure gradient dp=dy must be a constant. The asymmetric ¯ow
should approach zero in the upstream (ÿx ) direction, and must satisfy no-slip at the two plane
walls z �2h: This implies that dp=dy � 0, so uy satis®es:

Fig. 1. (a) The geometry of the cylindrical post between two parallel plates, showing the Cartesian and cylindrical
coordinate systems used in computing the ¯ow. The two components of the ¯ow (undisturbed by the post) are
shown: symmetric (plane Poiseuille ¯ow in x direction) and asymmetric ¯ow in y direction (decaying exponentially

upstream). (b) Streamlines of the base ¯ow in the model bifurcation, for B=A � 1, R � 0:5 and h � 1: Fluid
separating streamline is shown dashed. Dot (A) shows starting point for particle trajectories. Dot (B) is the chosen
reference point on the separating streamline. Reference line (C) is used in Fig. 7 to evaluate particle orientation

change and migration.

A.W. El-Kareh, T.W. Secomb / International Journal of Multiphase Flow 26 (2000) 1545±1564 1549



@u2
y

@x 2
� @u

2
y

@z2
� 0, �2�

with possible solutions of the form:

uy � cos

�
npz
2h

�
exp

�
npx
2h

�
, �3�

where n is an odd positive number. This solution decays exponentially upstream from the
dividing surface, which is the expected decay for the disturbance due to an obstacle in a
bounded ¯ow. Downstream it grows unboundedly; however, only the motion in the upstream
region is considered here. The case n � 1 corresponds to a ¯ow pro®le with no reversals, and is
assumed here. The overall ¯ow in the absence of the post is therefore:

u � exA

�
1ÿ z2

h2

�
ÿ eyB cos

�
pz
2h

�
exp

�
px
2h

�
, �4�

where B/A measures the extent to which the ¯ow is asymmetric.

2.1.2. Disturbance ¯ow caused by cylindrical post
A ¯ow v must now be calculated to cancel u on the cylindrical post, while satisfying no-slip

at the plane walls and decaying with distance from the post. Lee and Fung (1969) developed a
solution for such a ¯ow when the base ¯ow is plane Poiseuille, which can be extended for the
present case. Their solution in cylindrical coordinates has the general form:

vr � @f0

@r

�
1ÿ z2

h2

�
ÿ Re

"X1
n�1

1

a2
n

@fn

@r

dqn
dz

#
ÿ
X1
n�0

1

r

@cn

@y
cos�knz�; �5�

vy � 1

r

@f0

@y

�
1ÿ z2

h2

�
ÿ Re

"X1
n�1

1

a2
n r

@fn

@y
dqn
dz

#
�
X1
n�0

@cn

@r
cos�knz�; �6�

vz � Re

"X1
n�1

fnqn

#
; �7�

and the pressure is

p � ÿ2Z
h

(
f0

h
� Re

"X1
n�1

fn

cos�anz�
cos�anh�

#)
: �8�

In this solution, the functions fn�r, y� and cn�r, y� are any solutions of

r 2fn ÿ a2
nfn � 0 �9�

and
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r 2cn ÿ k2
ncn � 0, �10�

respectively, where kn � �2n� 1�p=�2h�: The functions qn are de®ned by

qn�z� � sin anz
sin anh

ÿ z cos anz
h cos anh

, �11�

with the complex eigenvalues an, n � 1, 2, 3, . . . , chosen to satisfy sin 2anh � 2anh:
Now, the velocity ®eld (4) at the post surface, when expressed in cylindrical coordinates and

expanded in Fourier series, yields:

urjr�R �
X1
n�1

ancos�knz� cos y�
X1
m�1

bmcos�k0z� sin my; �12�

uyjr�R �
X1
n�1

cncos�knz�sin y�
X1
m�0

dmcos�k0z�cos my; �13�

(with uz � 0), where the Fourier coe�cients are

an � ÿcn � 32A� ÿ 1�n
p3�2n� 1�3 ; �14�

bm � ÿB
ÿ
Imÿ1�k0R� ÿ Im�1�k0R�

�
; �15�

dm �
�ÿBI1�k0R� m � 0;
ÿB�Imÿ1�k0R� � Im�1�k0R�

�
m > 0;

�16�

and where the Im are Bessel functions of the second kind.
The form of these expansions suggests the following choices for fn and cn:

f0�r, y� �
A 00
r

cos y�
X1
m�1

A0, m
1

mrm
sin my; �17�

and for n > 0

fn�r, y� �
ÿ
A 0n � iB 0n

�
K1�anr�cos y�

X1
m�1

ÿ
An, m � iBn, m

�
Km�anr�sin my; �18�

and for nr0

cn�r, y� � C 0nK1�knr�sin y�
X1
m�0

Cn, mKm�knr�cos my; �19�

where An, m, Bn, m, Cn, m, A
0
n, B

0
n and C 0n are arbitrary (real-valued) constants. The functions Km

appearing in these expressions are MacDonald's functions (modi®ed Bessel functions of the
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third kind), which decay with r for mr0: The corresponding expressions of Lee and Fung
(1969) involve only the m � 1 terms, because of the symmetry of their base ¯ow (plane
Poiseuille ¯ow). Here, the addition of a decaying transverse ¯ow makes it necessary to add a
series of harmonics in y: A similar extension to higher harmonics was made by Tsay and
Weinbaum (1991) in their analysis of multiple cylindrical posts (in a square periodic array)
between two plates.
This general solution identically satis®es the no-slip conditions on the plane boundaries. It

remains to evaluate the unknown coe�cients so as to satisfy the boundary conditions on the
post. The details of this procedure are given in Appendix A. The general approach is to
expand the components of u and v at the post in terms of suitable orthonormal bases and to
equate the coe�cients to zero. For the r and y components, a double Fourier series in y and z
is used. However, the z component of velocity is odd in z, and a trigonometric Fourier
expansion in z would yield terms that do not satisfy the boundary conditions at z �2h: An
alternative set of basis functions Yn�z� is therefore used (Lee and Fung, 1969). The resulting set
of linear equations for the coe�cients is truncated at n � 4 and m � 4 and solved numerically.
Fig. 1b shows streamlines of the ¯ow in the plane midway between the two plates. In all
computations (Figs. 1b and 4±7), the plate spacing is chosen as h � 1 and the post radius is
R � 0:5: The numerical solutions for u and v cancel each other to within 0.1%, and the
velocities on the plates are O(10ÿ6), compared with O(1) velocities near the midplane,
indicating that the error in satisfying the no-slip conditions on the post and plates is very
small.
Once the undisturbed ¯uid ¯ow has been determined, the ¯uid dividing streamline can be

determined. The parameter B/A can be interpreted as giving a ¯ow fraction, by assuming that
the distance between the two parallel plates represents the upstream tube diameter. The ¯ow in
the vessel is then interpreted as the ¯ow between the streamlines at y � ÿh and y � h far
upstream. Then for the above values of h and R, for B=A � 0 the ¯ow fraction in the high ¯ow
downstream vessel is 0.5, for B=A � 0:5 it is 0.72, and for B=A � 1:0 (as in Fig. 1b) it is 0.93.
(These ¯ow fractions are based on ¯ow in the midplane z � 0; from experimental results of
Rong and Carr (1990) for the shape of the entire dividing streamsurface, the ¯ow fraction in
the midplane is close to the ¯ow fraction for the entire tube.)

2.2. Motion of spherical caps in a ¯ow ®eld

The equations for the motion of spherical caps in a ¯ow ®eld are now developed. The
particle motion is approximated at any instant in time using the local linear component of the
¯ow, as if that ¯ow was uniform and unbounded. As the particle changes position, however,
this local linear component varies. Mathematically, this corresponds to using the ®rst term in a
Taylor series expansion of the ¯ow about the chosen particle reference point, and using only
the ®rst ``re¯ection'' in a method of re¯ections expansion (Happel and Brenner, 1973). It will
be shown below that migration due to the quadratic variation of the ¯ow is relatively much
smaller. Therefore, in the following subsection, the equations governing the motion of the
model asymmetric particles (spherical caps) in linear ¯ow ®elds are presented.
The motion of a spherical cap in a linear ¯ow ®eld may be determined from the complete

resistance tensor, which was computed in a series of papers summarized by Dorrepaal (1984).
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For a neutrally buoyant body of revolution, the particle velocity Ui in a linear ¯ow wi with a
rate-of-strain tensor eij and vorticity 2oi is (Nir et al., 1975):

Ui � wi �
"
g

�
1

2
dikpl � 1

2
dilpk ÿ pipkpl

�
� b

�
pipkpl ÿ 1

3
pidkl

�#
ekl: �20�

Here, Cartesian coordinates �X1, X2, X3� are used. The unit vector pi points along the particle
axis and gives its orientation. The motion of this vector is given by (Nir et al., 1975)

dpi
dt
� b�eikpk ÿ eklplpi� � Eijkojpk: �21�

In these equations, the particle is described by three constants, g, b and b, which are related to
the resistance tensor as follows:

g � 2
b1q1 ÿ d1r1

a1b1 ÿ d 2
1

; �22�

b � q3
a3
; �23�

and

b � 2
a1r1 ÿ d1q1

a1b1 ÿ d 2
1

: �24�

(A sign error in the expression for g as given by Nir et al. (1975) has been corrected here.) The
constants a1, a3, b1, d1, r1, q1 and q3 appear in the resistance tensor of the particle (Nir et al.,
1975), and they depend only on the cap angle a and radius a, and the point chosen as the
origin. It is convenient to take the origin to be the center of reaction. This is de®ned by
Happel and Brenner (1973) for any rigid particle as the unique geometrical point with reference
to which the coupling tensor in the full hydrodynamic resistance tensor is symmetric. Kim and
Karrila (1991) use the term ``center of hydrodynamic resistance'' for this point.) From the
standpoint of hydrodynamic behavior, this point is more meaningful than the center of mass
(for a spherical cap, unlike for orthotropic particles, these two centers do not coincide).
Formulas for the values of the constants a1, etc., are given by Dorrepaal (1984) and he also
tabulates their values for this choice of origin. Fig. 2 shows the variation of the parameters b, g
and b with cap angle a: While b is independent of cap radius a, both b and g are proportional
to a. In Fig. 2, a is chosen for each cap angle to give all caps the same area 0.46 (that of a cap
with a � 0:5, a � p=4). The area is held ®xed to correspond to red cells, which have nearly
constant area.
Fig. 3 shows the trajectory of the center of reaction of a cap in a simple shear ¯ow u1 � X2,

starting at the origin. The center of reaction makes a signi®cant excursion, mainly in the X1

direction, returning to its original position after one complete revolution of the particle. In
contrast, the center of reaction of an orthotropic particle placed in this ¯ow remains at the
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Fig. 2. Variation of spherical cap hydrodynamic parameters g, b and b with cap angle a: Radius a is chosen for each
a so that all caps have the same area 0.46 as a cap with a � 0:5, a � p=4: The inset shows the de®nitions of cap

radius a, angle a, and (unit) orientation vector p.

Fig. 3. Trajectory of the center of reaction of a spherical cap �a � p=4, a � 0:5� in a simple shear ¯ow, starting at
(0, 0) on the line of zero velocity �X1-axis) with initial orientation vector (ÿ1, 0). Dots show positions at evenly
spaced time intervals.
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origin. The spherical cap's lack of fore-aft symmetry leads to instantaneous migration,
although no net migration occurs over one period of the motion (cf. Bretherton, 1962).
For an orthotropic particle, the trajectory of the particle is de®ned by the motion of its

center of reaction, which coincides with its geometric center. For a spherical cap, however, the
choice of a point (®xed with respect to the cap) to de®ne the trajectory is, to some extent,
arbitrary. For almost all points, trajectories analogous to Fig. 3 show larger maximum
excursion in the X2 direction (the direction orthogonal to the ¯uid streamlines). Those points
with smaller maximum X2 excursions lie extremely close to the center of reaction, and have
trajectories that are quite similar. Therefore, the center of reaction is a suitable reference point
for de®ning trajectories, since it does not exaggerate the departure of trajectories from
streamlines during particle rotation.
To compute trajectories, the velocity gradients appearing in Eqs. (20) and (21) are

determined from a Taylor series expansion about the center of reaction, of the ¯ow de®ned in
Section 2.1.
For pressure-gradient migration of spherical particles, the motion is approximated by

Faxen's Law:

Uÿ u0 � a2

6Z
�rp�0, �25�

where the subscript 0 denotes evaluation at the particle center. The left-hand side of Eq. (25)
gives the deviation of particle velocity U from ¯uid velocity u. The velocity u and pressure p
are for the ¯ow in the absence of the particle. Results for particle trajectories are now
presented in the following section.

3. Results and discussion

In the absence of particles, a separating streamsurface extends upstream from the ¯ow
divider in a bifurcation, such that all the ¯uid lying on one side of this surface ultimately
enters one branch. Particle migration across this surface alters the relative concentrations in the
downstream branches. Such migration depends on the component of particle velocity
perpendicular to the streamsurface, evaluated on it. For simplicity, we restrict attention to
trajectories on the midplane �z � 0� of the bifurcation.

3.1. Pressure-gradient migration in the model bifurcation

As stated earlier, the velocity of the center of a sphere relative to the undisturbed ¯ow at
that point is proportional to the pressure gradient, by Faxen's Law. Migration across a
streamline therefore depends on the component of pressure gradient acting normal to it. In
each downstream branch of the bifurcation, the pressure decreases. This implies the existence
of a point of maximum pressure on the dividing surface. The direction of particle migration
can be predicted by considering the position of this maximum relative to the intersection of the
separating streamline with the dividing surface. As shown in Fig. 4, the separating streamline
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in an asymmetric ¯ow lies on the low-¯ow side of the point of maximum pressure. The
pressure gradient on the separating streamline is therefore directed towards the high-¯ow side
near the ¯ow divider, causing the particle migration towards the high-¯ow side.
The magnitude of this e�ect can be estimated by evaluating the pressure gradient on the

separating streamline at a distance of one radius R away from the dividing surface. Using
Faxen's Law, the resulting velocity correction is less than 1% of the ¯uid velocity. Trajectories
computed with the correction are almost indistinguishable from ¯uid streamlines in the region
up to the point where the sphere is so close to the post that the approximation cannot be used.
The study of Wu et al. (1992) for migration of spherical particles in a divided ¯ow found a

signi®cant phase separation e�ect. The di�erence between their results and ours has two
probable causes. Firstly, their computations included near-®eld interactions. Secondly, their
assumed geometry of a circular hole in a plane leads to a ¯ow ®eld around a sharp-edged
corner, in whose vicinity very large pressure gradients occur. In contrast, the curved ¯ow
divider used here leads to a smoothly varying pressure ®eld. Audet and Olbricht (1987) and
Amini and Fallahyan (1997) used numerical methods to predict the two-dimensional analog of
pressure-gradient migration, for circular cylinders in two-dimensional bifurcating channels.
Because of the signi®cant di�erences between two- and three-dimensional ¯ows, it is di�cult to
compare their results with the model presented here.
For non-spherical particles, the magnitude of the pressure-gradient migration, which depends

primarily on particle size, is likely to be of similar magnitude to that estimated for spheres.
This type of migration, which depends on quadratic variations in the ¯ow ®eld, appears to be a
weak e�ect. Shape-dependent migration, discussed next, may therefore be dominant for non-
spherical particles.

3.2. Shape-dependent migration in the model bifurcation

Using the equations from Section 2.2, the velocities of spherical caps in the bifurcated ¯ow
of Section 2.1 are obtained. Fig. 5 shows the migration velocity (perpendicular to the ¯uid

Fig. 4. The angular location on the post (in the midplane between the two plates) of the stagnation line �ys� and
pressure maximum �yp), as a function of ¯ow asymmetry B/A, for R � 0:5 and h � 1: Angles are measured in
radians relative to the stagnation point for symmetric ¯ow.
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Fig. 5. Migration velocity normal to the ¯uid dividing streamline, as a function of cap orientation. Spherical caps
with a � p=4, a � 0:5: Cap orientation angle w is angle (radians) between orientation vector p and x-axis. Shown for
three cases of ¯ow asymmetry: (a) B=A � 0:0 (symmetric ¯ow); (b) B=A � 0:5 (high ¯ow branch receives 72% of

¯ow); (c) B=A � 1:0 (high ¯ow branch receives 93% of ¯ow) For each B/A, plot is for the point of intersection of
the ¯uid dividing streamline and the line x � ÿ1, z � 0: Other parameters R, h as in Fig. 1b.

Fig. 6. Trajectories of spherical caps �a � p=4, a � 0:5� with di�erent initial orientations wi (angle between cap axis p

and x-axis). Center of reaction is used as reference point. Dashed line shows ¯uid separating streamline. Parameters
as in Fig. 1b.
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streamline) at a point on the dividing streamline, as a function of particle orientation. This is
for spherical caps placed in the ¯ow of Fig. 1b. This is shown for several values of the ratio B/
A that de®nes the asymmetry of the ¯ow. The dividing streamline changes position as B/A
changes; for each B/A, the plot is made for the point where this streamline intersects the plane
x � ÿ1: Migration is sensitive to orientation, but relatively insensitive to the asymmetry of the
¯ow.
The sensitivity of migration to particle orientation is also seen in Fig. 6, which shows

particle trajectories in the ¯ow of Fig. 1b. The center of reaction is used as the reference point,
and starts at the point (ÿ2.75, 0.536, 0), which lies on the ¯uid dividing streamline. As the
particle approaches the dividing surface, it encounters a region of increasing extensional ¯ow,
with extension approximately in the y direction. As a result, the long axis of the particle tends
to become aligned perpendicular with the ¯ow, unless it is initially aligned with the ¯ow. Fig. 7a
shows the cap orientation wf at the instant that it passes the reference line indicated in Fig. 1b,
as a function of its initial orientation wi: (This reference line is normal to the ¯uid dividing
streamline at point B.) Orientation w is de®ned as the angle from the x-axis to the cap
orientation vector p, measured counterclockwise (the same convention used to de®ne the angle
y in Fig. 1a). The ®nal orientation is insensitive to the initial orientation for most angles, but
highly sensitive for initial orientations near 2p=2:

Fig. 7. (a) Cap orientation wf and (b) cap migration dm at reference line (C ) (Fig. 1a) as functions of initial cap

orientation wi: Parameter values as in Figs. 1b and 6.
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The migration of particles as they cross the reference line is shown in Fig. 7b. Migration is
measured as the distance between the point B (which lies on the ¯uid separating streamline),
and the point of intersection of the center of reaction trajectory with the line C (Fig. 1b).
Migration towards the high ¯ow side (roughly in the ÿy direction) is assigned a positive sign;
in the opposite direction, it is negative. The variation of particle migration with initial
orientation wi re¯ects the combined e�ects of the sensitive dependence of migration on particle
orientation, shown in Fig. 6, and the ¯ow-induced changes in particle orientation shown in
Fig. 7a.
The migration shown in Fig. 7b is substantially larger than that expected for spheres of

comparable size according to Faxen's Law. Therefore, the amount of particle migration in this
¯ow is very dependent on particle shape and orientation. When averaged with respect to all
possible initial orientations wi, the migration is close to zero. Multiple particles arriving with
random, uniformly distributed orientations would therefore experience virtually no net
migration. The actual distribution of orientations of red cells arriving at a bifurcation is,
however, unlikely to be uniform, as a result of cell deformability and interactions, and cell
alignment occurring at upstream bifurcations. Experimental observations suggest a tendency
for red cells to assume shapes which are convex in front and concave in the rear. These e�ects
cannot be estimated in the context of the present model, which assumes rigid cells.

4. Conclusions

The mechanics of red blood cell motion in bifurcations is complex, and all available models
involve a number of simpli®cations. Here, the objective was to examine migration of particles
approaching the dividing surface in a bifurcation whose downstream segments have similar
diameters. Therefore, the interaction of the particles with the ¯ow around the ¯ow divider was
emphasized by considering a geometry consisting of a cylindrical post between parallel plates.
The motion of particles was predicted using a local linear or (for spheres) quadratic
representation of the ¯ow ®eld. This approach neglects the e�ect of domain boundaries on the
perturbation of the ¯ow ®eld by the particle, an approximation that becomes inaccurate when
the particle closely approaches the dividing surface. A transverse straining ¯ow is set up near
the ¯ow divider (Fig. 1b), and so relatively small migrations occurring more than one particle
diameter upstream of the ¯ow divider may have a signi®cant e�ect on the particle's ultimate
trajectory.
The main ®nding is that for spherical caps, particle migration is much larger than predicted

for spheres of similar size in the same ¯ow ®eld, and depends in a complex way on initial
particle orientation. The mean migration of a population of initially randomly oriented caps is
nearly zero. Therefore, in order to estimate the contribution of particle migration to phase
separation in bifurcations, information is required about the distributions of particle shapes
and orientations upstream of the bifurcation. Under some conditions, the orientations of red
blood cells can be stabilized, with ``tank-treading'' motion of the membrane around the cell
interior (Goldsmith and Marlow, 1972, 1979). The resulting non-uniform distribution of
orientations may lead to net shape-dependent migration across the separating streamsurface.
The results shown in Fig. 5 suggest that the shape-dependent migration is relatively insensitive
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to the asymmetry of the ¯ow approaching the ¯ow divider. However, in a vascular bifurcation,
the position of the separating streamsurface depends on the division of ¯ow between the
branches. If the distribution of particle orientations varies within the cross-section of the
parent vessel, the net migration may depend on the ¯ow asymmetry.
In summary, these analyses suggest that the assumption made in previous models of

bifurcations, that red cells follow ¯uid streamlines, is justi®ed if cells approach the bifurcations
with random orientations. However, actual distributions of red cell orientations in the parent
vessel may be non-uniform, as a result of cell deformability and cell±cell interactions. Further
progress in modeling the motion of red cells in diverging bifurcations is likely to depend on
improved understanding of red cell motion in unbranched vessels.
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Appendix A. Evaluation of coe�cients in solution for base ¯ow

According to Eqs. (5)±(7) and (17)±(19), the components of velocity are:
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vz � Re
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where use has been made of the identity
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We now impose the no-slip condition on the post. For the r and y components, we expand in
series analogous to Eqs. (12) and (13):
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From the following expansions (Lee and Fung, 1969):
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it is found that
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With these expansions, the no-slip conditions can be seen to give the following algebraic
equations:

E 0n � ÿan; E0, m � ÿbm; En, m � 0 for n > 0; �A13�

F 0n � ÿcn; F0, m � ÿdm; Fn, m � 0 for n > 0: �A14�

Next, we consider the z component. Following Lee and Fung (1969), we introduce the
expansion:
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and ln satis®es tan lnh � tanh lnh: The following properties of qn�z� and Yn�z� are needed:
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where dn, m is the Kronecker delta, and
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From these properties, and the no-slip condition, it follows that
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for n � 1, 2, 3, . . . and m � 1, 2, 3, . . . : Eqs. (A13), (A14), (A19) and (A20) for the coe�cients
appearing in the velocity were solved numerically, using a Mathematica program.
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